In Vivo Drug Efficacy Against Plasmodium Falciparum

Assessing Drug Efficacy Against Plasmodium Falciparum Liver Stages In Vivo

Flannery et. al., 2018

Study Summary

Currently, the identification of drugs targeting the liver stage of malaria relies on in vitro Pfalciparum liver stage assays or in vivo causal prophylaxis assays using rodent malaria parasites; until recently there was no method to directly test in vivo liver stage activity of candidate antimalarials against the human malaria–causing parasite Pfalciparum. Here, the researchers use the FRG liver chimeric humanized mouse to demonstrate in vivo Pfalciparum liver stage development and describe the efficacy of clinically used and candidate antimalarials with prophylactic activity. This proof of principle shows that the model can be used to show efficacy in vivo after high throughput identification of novel targets against malaria.

Erika L. Flannery, Lander Foquet, Vorada Chuenchob, Matthew Fishbaugher, Zachary Billman, Mary Jane Navarro, William Betz, Tayla M. Olsen, Joshua Lee, Nelly Camargo, Thao Nguyen, Carola Schafer, Brandon K. Sack, Elizabeth M. Wilson, Jessica Saunders, John Bial, Brice Campo, Susan A. Charman, Sean C. Murphy, Margaret A. Phillips, Stefan H.I. Kappe, and Sebastian A. Mikolajczak

 2018 Jan 11;3(1)

Study Abstract

Malaria eradication necessitates new tools to fight the evolving and complex Plasmodium pathogens. These tools include prophylactic drugs that eliminate Plasmodium liver stages and consequently prevent clinical disease, decrease transmission, and reduce the propensity for resistance development. Currently, the identification of these drugs relies on in vitro P. falciparum liver stage assays or in vivo causal prophylaxis assays using rodent malaria parasites; there is no method to directly test in vivo liver stage activity of candidate antimalarials against the human malaria–causing parasite P. falciparum. Here, we use a liver-chimeric humanized mouse (FRG huHep) to demonstrate in vivo P. falciparum liver stage development and describe the efficacy of clinically used and candidate antimalarials with prophylactic activity. We show that daily administration of atovaquone-proguanil (ATQ-PG; ATQ, 30 mg/kg, and PG, 10 mg/kg) protects 5 of 5 mice from liver stage infection, consistent with the use in humans as a causal prophylactic drug. Single-dose primaquine (60 mg/kg) has similar activity to that observed in humans, demonstrating the activity of this drug (and its active metabolites) in FRG huHep mice. We also show that DSM265, a selective Plasmodial dihydroorotate dehydrogenase inhibitor with causal prophylactic activity in humans, reduces liver stage burden in FRG huHep mice. Finally, we measured liver stage–to–blood stage transition of the parasite, the ultimate readout of prophylactic activity and measurement of infective capacity of parasites in the liver, to show that ATQ-PG reduces blood stage patency to below the limit of quantitation by quantitative PCR (qPCR). The FRG huHep model, thus, provides a platform for preclinical evaluation of drug candidates for liver stage causal prophylactic activity, pharmacokinetic/pharmacodynamics studies, and biological studies to investigate the mechanism of action of liver stage active antimalarials.

PUT OUR EXPERIENCE TO WORK FOR YOU

Subscribe For News and Information

Join our mailing list to receive the latest news and updates, sales promotions, and job opportunies.

You have Successfully Subscribed!